Applications of Phase Contrast Imaging in Congenital Heart Disease

Kenneth Cheung

FRCR, FHKCR, FHKAM (Radiology) Cardiac Imaging Fellow at the Hospital for Sick Children, Toronto, Ontario Associate Consultant, Department of Radiology, Hong Kong Children's Hospital

cky630a@ha.org.hk

Conflicts of Interest

No conflicts of interest

Special thanks to Dr Shi-joon Yoo Dr Davide Marini Dr Mini Pakkal all the staff at the SickKids CDIU

Figure 1. Diagrams show that spins moving along an external magnetic field gradient acquire a difference in the phase of their rotation (right), whereas nonmoving spins do not (left). The amount of phase difference is proportional to the velocity of the moving spin. t = time, V = velocity, $\Phi = \text{phase shift}$.

Figure 2. Principle of phase-contrast sequences available in most clinical MR imaging units. Diagram shows that two acquisitions are performed, each one with all parameters kept constant except for the flow-sensitizing bipolar gradients. The data of the two acquisitions are subtracted. The effective flow encoding is achieved by means of the difference in the bipolar gradients of the two acquisitions. This technique eliminates all phase shifts induced by imaging gradients. t = time, V = velocity.

Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002 May-Jun;22(3):651-71

What phase contrast images look like

Phase image

Magnitude image

Paediatric considerations in CMR

- 1. Complex malformations and post-operative changes
- 2. Typical and atypical shunts
- 3. High and turbulent flows

Technical details

Retrospective ECG gating with free breathing 25-30 phases Velocity encoding: Arteries: 150-200 cm/s, veins: 100-120 cm/s

Applications of phase contrast imaging

Information provided from phase contrast imaging

- 1. Flow volumes
- 2. Flow pattern
- 3. Direction of flow
- 4. (velocity)

Applications

- 1. Assessment of flow direction
- 2. Assessment of regurgitant fraction
- 3. Assessment of shunt volume
- Assessment of pulmonary blood flow for calculation of pulmonary vascular resistance
- 5. Assessment of aortopulmonary collateral flow

1. Assessment of flow direction

Monvadi B et al. Cardiovascular Applications of Phase-Contrast MRI. American Journal of Roentgenology 2009 192:3, 662-675

2. Assessment of regurgitant fraction

4.3.5. Tetralogy of Fallot

Recomme	ndations for	TOF	COR	
Reference summarize	d studies the ed in Online	at support recommendations are Data Supplement 43. (See Section 4.3.6. for	Therapeu	tic
recommer ventricle-	ndations reg to-PA condu	arding evaluation and management of right its.)		
COR	LOE	Recommendations	1.1	
Diagnostic				
i.	B-NR	 CMR is useful to quantify ventricular size and function, pulmonary valve function, pulmonary artery anatomy, and left heart abnormalities in patients with repaired TOF.^{54,3,5-1} 	lla	
i.	B-NR	 Coronary artery compression testing is indicated before right ventricle–to-PA conduit stenting or transcatheter valve placement in repaired TOF.^{543,5-2} 		
lla	B-NR	 Programmed ventricular stimulation can be useful to risk-stratify adults with TOF and additional risk factors for SCD.^{54,35-3-54,35-8} 	lla	
		 In patients with repaired TOF, cardiac catheterization with angiography, if indicated, is reasonable to assess 	lib	
lla	C-EO	nemodynamics when adequate data cannot be obtained noninvasively in the setting of an arrhythmia, HF, unexplained ventricular dysfunction, suspected pulmonary hypertension or cyanosis.	IIb	

tachyarrhythmia. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

Recommendations for TOF (Continued) LOE

B-NR

B-NR

B-NR

C-EO

C-EO

Recommendations

explained. 54.3.5-9-54.3.5-11

for SCD \$4.3.5-15-54.3.5-17

5. Pulmonary valve replacement (surgical or percutaneous) for relief of symptoms is recommended for patients with repaired

TOF and moderate or greater PR with cardiovascular symptoms not otherwise

6. Pulmonary valve replacement (surgical or percutaneous) is reasonable for preservation of ventricular size and function

in asymptomatic patients with repaired TOF and ventricular enlargement or dysfunction and moderate or greater PR \$4.3.5-1,54.3.5-9,54.3.5-12-54.3.5-14

7. Primary prevention ICD therapy is reasonable

8. Surgical pulmonary valve replacement may be reasonable for adults with repaired TOF

and moderate or greater PR with other lesions requiring surgical interventions. 9. Pulmonary valve replacement, in addition to arrhythmia management, may be

considered for adults with repaired TOF and moderate or greater PR and ventricular

in adults with TOF and multiple risk factors

2. Estimation of regurgitant fraction

1. Pulmonary regurgitation: Backward flow/Forward flow

- 2. Aortic regurgitation: (AOV forward flow Qp)/ AOV forward flow
- 3. Tricuspid regurgitation: RVCI-MPAf/ (RVCI -MPAf) + Qs
- 4. Mitral regurgitation: LVCI AAOf/ (LVCI AAOf) + Qp

Local practice, no established consensus

3. Assessment of shunt volume

Qp/Qs (pulmonary blood flow/systemic blood flow)

Qs = QAAO

Qs =

 QSVC (all the venous return from the upper body)

+ QDAO (all the systemic supply to the lower body)

(more reliable than direct measurement of AAO due to presence of turbulent flow)

Qpa = Qmpa

Qpa =QRPA + QLPA

(more reliable than direct measurement of MPA due to turbulent flow and cardiac motion)

Example case

- 12 year old girl with history of valve sparing repair of Tetralogy of Fallot
- Previous echocardiography showed absence of residual left to right shunting
- Follow-up cardiac MRI to assess:
 - Ventricular volumes and function
 - Pulmonary regurgitation

Qp = Q(RPA+LPA)

RPA 3.2 L/min/m2 LPA 2.8 L/min/m2

Qp = 6 L/min/m2

Qs = Q(SVC+DAO)

SVC= 1.4 L/min/m2 DAO = 2.5 L/min/m2

Qs = 3.9 L/min/m2

Qp / **Qs** = 1.6

院

Retrospective analysis of all the follow up echocardiograms

Retrospective analysis of all the follow up echocardiograms

4. Assessment of pulmonary blood flow for calculation of pulmonary vascular resistance

Fick Principle

Thermodilution

https://www.pcipedia.org/

Limitations of the Fick principle

The Fick principle requires measurement of

- Haemoglobin
- aortic and pulmonary artery oxygen saturations and partial pressures
- oxygen consumption.

Accumulation of errors due to multiple individual measurement errors

Reduced accuracy in patients with large intra-cardiac shunts and high pulmonary blood flow

Thermodilution

Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent JL, Scheeren TW. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016 Sep;42(9):1350-9.

Use of CMR

1. Direct measurement of pulmonary blood flow

- a. QRPA + QLPA
- b. Q (RUPV + RLPV + LUPV + LLPV) in cases of turbulence
- 2. Catheter pressure measurement

Muthurangu V et al. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation. 2004; 110:826-834.

5. Assessment of aortopulmonary collateral flow

Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: Quantification with magnetic resonance

Perioperative management of APCs prior to Fontan completion

The aortopulmonary collateral flow (relative to the cardiac index) correlated with

- the duration of hospital stay (P = .02)
- and pleural drainage (P = .03).

Grosse-Wortmann, Lars et al. Aortopulmonary collateral flow volume affects early postoperative outcome after Fontan completion: A multimodality study. The Journal of Thoracic and Cardiovascular Surgery, Volume 144, Issue 6, 1329 - 1336

Qpa =QRPA + QLPA

Qpv = QPVs

\bigcap	O_{D}	O_{no}
QAPC = V	upv -	Wha

BCPC

OBJECTIVES:

- 1. Pulmonary blood flow
- 2. Aortopulmonary collaterals
- 3. Ventricular function

PROTOCOL:

SI	EQUENCE	REF IMAGES	#	REMARKS
SSFP sco	out – 3 planes			
SSFP loc	alizer – 3 planes	Scout		
Cine – 20	CV	Axial	5	
MOLLI -	- SA - precontrast	Axial / 2CV	3	basal and midventricular
3D IR FL	ASH Angio with	Axial / Sag / Cor		Gadovist 0.2 mmol/kg
ECG-gati	ing and respiration			Slow infusion, starting 45 sec before the start
navigatio	n			of contrast and finishing 45 sec before the
				expected end of the scan.
Cine – 40	CV	AVV / 2CV	1	
Cine – SA	4	2CV/4CV	10-14	3rd plane should align on the AV junction.
T1 scout	for LGE - SA	2CV/4CV	1	At 10 min after injection of Gadovist
LGE – SA	A single shot	2CV/4CV		Cover entire ventricles
Cine – 40	CV (60 phases low			
resolution	n for 3D prescrip)			
LGE – ax	tial single shot	Coronal / Sagittal		Cover entire LV
MOLLI -	- SA - postcontrast	Same as pre	3	
PC – AA	0	Coronal / Sagittal		Use angio when needed
PC – SVO	C	Coronal / sagittal		Use angio when needed
PC - DAG	C	Coronal / Sagittal		Also target IVC if possible
PC - LPA	1	IR FLASH		
PC - RPA	1	IR FLASH		Consider upper and main branch separately
PC – RU	PV	IR FLASH		
PC – RLI	PV	IR FLASH		
PC – LUI	PV	IR FLASH		
PC – LLF	PV	IR FLASH		

- PC of large venous decompressing channels, if present

Fontan Operation

PROTOCOL:

SEQUENCE	REF IMAGES	#	REMARKS
SSFP scout - 3 planes			
SSFP localizer - 3 planes	Scout		High resolution for coronal
Cine – 2CV	Axial	5	_
MOLLI - Ax - precontrast	Coronal / Sagittal	1	
MOLLI - SA - precontrast	Axial / 2CV	2	basal and midventricular
Flash in-out of phase	Axial liver only		Please refer to protocol at the end of this
imaging	-		document
HASTE T2 Abd	Axial		1
HASTE T2 Abd	Coronal		
GRE T1 or 3D VIBE	Axial /Coronal		1
Static contrast angio - 5 runs	Axial / Sag / Cor		MultiHance 0.15 mmol/kg, injection over
			70% of scan time, trigger the 1st run when
			contrast arrives in descending aorta.
Cine – 4CV	AVV/2CV	1	U
Cine – SA	2CV/4CV	10-14	3rd plane should align on the AV junction.
GRE T1 or 3D VIBE	Coronal		
T1 scout for LGE - SA	2CV / 4CV	1	At 10 min after injection of MultiHance
LGE – SA single shot	2CV / 4CV	-	Cover entire LV
LGE – axial single shot	Coronal / Sagittal		Cover entire LV
Cine – 4CV (60 phases low			
resolution for 3D prescrip)			
MOLUI – Ax – postcontrast	Same as pre	1	At 15 minutes after injection of MultiHance
MOLLI – SA - postcontrast	Same as pre	2	
Inject Ablavar 0.03 mmol/kg	sume us pre	2	
3D IR FLASH - coronal	Axial / Sagittal		
PC – AAO	Coronal / Sagittal		Use angio when needed
PC – SVC	Coronal / sagittal		Use angio when needed
PC - DAO	Coronal / Sagittal		Also target IVC if possible
PC - LPA	IR FLASH		
PC - RPA	ID ET ASU		
	IK FLASH		Consider upper and main branch separately
PC – RUPV	IR FLASH IR FLASH		Consider upper and main branch separately
PC – RUPV PC – RLPV	IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately
PC – RUPV PC – RLPV PC – LUPV	IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately
PC – RUPV PC – RLPV PC – LUPV PC – LUPV PC – LLPV	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately
PC – RUPV PC – RLPV PC – LUPV PC – LLPV PC – LLPV	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - Fontan below <u>ienest</u> PC-Fontan above fenest	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - Fontan below reneat PC-Fontan above fenest (when present)	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - Fontan below renest (when present) PC-Fenestration (when	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH 2CV / axial		Consider upper and main branch separately VENC of 200cm/s
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - LUPV PC-Fontan below <u>renest</u> (when present) PC-Fenestration (when present)	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately VENC of 200cm/s
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - Fontan below ienest (when present) PC-Fenestration (when present) PC-SMA/SMV	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH 2CV / axial IR FLASH		Consider upper and main branch separately VENC of 200cm/s
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - Fontan below ienest PC-Fontan above fenest (when present) PC-Fenestration (when present) PC-Fenestration (when present) PC-SMA/SMV PC-celiac axis	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately VENC of 200cm/s
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - DIAN DELOW IENEST PC-Fontan above fenest (when present) PC-Fenestration (when present) PC-SMA/SMV PC-celiac axis PC-portal vein	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately VENC of 200cm/s
PC - RUPV PC - RLPV PC - LUPV PC - LLPV PC-Fontan below renest (when present) PC-Fontan below renest (when present) PC-SMA/SMV PC-celiac axis PC-cortal vein PC-ROMA vein	IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH IR FLASH		Consider upper and main branch separately VENC of 200cm/s
PC - RUPV PC - RLPV PC - LUPV PC - LUPV PC - Fontan above fenest (when present) PC-Fenestration (when present) PC-SMA/SMV PC-celiac axis PC-portal vein PC-IVC above renal veins PC-IVC and DAO above	IR FLASH IR FLASH		Consider upper and main branch separately VENC of 200cm/s

ĩ

Workflow at SickKids

- 1. MRI performed at Cardiac Diagnostic Imaging Unit
- 2. Invasive angiography performed
- 3. Flows derived from MRI
- 4. Embolisation of collaterals if presence of significant APCs (~>50%)

Radiologist

Cardiologist

Interventional cardiologist

Limitations of phase contrast imaging

- 1. Motion artefacts
- 2. Partial volume artefacts
- 3. Turbulence or stenotic jets

Future directions

4D Flow

Additional information on

Wall shear stress

Turbulent kinetic energy

Vortex flows

Pressure gradient

4D flow MRI. Michael Markl et al. Journal of magnetic resonance imaging : JMRI 2012

Questions?

Appendix

peak velocity demonstrate a deviation of more than 10% if V_{enc} increases by more than three times the velocity in the vessel (left), whereas estimates of flow are largely preserved (right). Red line indicates the true peak velocity or true flow. Green area indicates a deviation of 10% from the true peak velocity or true flow. Bottom: Surface renderings of data from velocity images obtained at different values of V_{enc} show how increasing noise may mask the true peak velocity values. (The experimental setting consisted of the following: laminar steady flow of 2.05 L/min, gadolinium-doped saline solution, and a 1.5-cm-diameter glass tube. The real flow rate was monitored with an inductive flowmeter. The imaging parameters were kept constant while V_{enc} was varied between 57 cm/sec and 550 cm/sec.)

Lotz J et al. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002 May-Jun;22(3):651-71

AR=NM Archive request accepted.

Energy per unit volume before = Energy per unit volume after $P + \frac{1}{2} \alpha v^{2} + \alpha ch = P + \frac{1}{2} \alpha v^{2} + \alpha ch$

Powell AJ et al. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood

flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol.

Commonly encountered flow patterns

1. PAPVC

a. Simple numbers game: Qsvc above Qsvc below

Radiology

Hong Kong Children's Hospital